01.03.2024 - Cash Award Math Rider I Prize Winner Ms.Naga Bhavya Jothi's Solution

Construction:

Join OB, OC, BD

Proof:

$0 \rightarrow$ incenter of $\triangle A B C$.
As $\mathrm{AO}=\mathrm{AG}$ and $\mathrm{AC}=\mathrm{AF}$ and $\angle O A C=\angle G A F=\frac{A}{2}$
$\Delta \mathrm{AOC} \cong \triangle A G F$

$\Rightarrow \angle A G F=90^{\circ \circ}+\frac{\angle B}{2}$
(1) (as $\angle A O C=180^{\circ}-\frac{A}{2}-\frac{C}{2}=90^{\circ}+\frac{B}{2}=\angle A G F$)

Now, $\angle B O E=\angle A B O+\angle B A O=\frac{\angle A}{2}+\frac{\angle B}{2}=90^{\circ}-\frac{C}{2}$
And for $\overline{A B} ; \angle A D B=\angle A C B=\angle C \quad$ (as D lie on circumcircle)
$\Rightarrow \ln \triangle \mathrm{BDO} ; \angle D B O=90^{\circ}-\frac{\angle C}{2} \quad \Rightarrow B D=O D$
$\angle B O D=90^{\circ}-\frac{\angle C}{2}$
$\angle B O D=\angle C$
In $\triangle B E O ; O D=B D=D E \quad \Rightarrow \angle O B E=90^{\circ}$
$\Rightarrow \angle A B E=\angle A B O+\angle O B E=90^{\circ}+\frac{\angle B}{2}=\angle F B E$
From (1) \& (2)
$\Rightarrow \angle A G F=\angle E G F=\angle F B E$
\Rightarrow EBGF is a cyclic Quadrilateral (i.e .,BEFG is concyclic)

